Skip to main content

Richard Venditti

Elis-Signe Olsson Professor of Pulp and Paper Science and Technology

Biltmore Hall (Robertson Wing) NA

Bio

Dr. Venditti’s research is in the area of pulp/paper, bioeconomy, recycling, and environmental lifecycle analysis with a goal to ensure effective utilization of renewable plant resources to produce sustainable products, including polymeric materials and biofuels.

Dr. Richard Venditti’s is the Elis-Signe Olsson Professor of Pulp and Paper Science and Engineering in the Forest Biomaterials Department at NCSU. He has 26 years of experience in research in the areas of pulp/paper, bioeconomy, recycling, and environmental LCA. His research and teaching is involved in developing effective systems to transform renewable plant based resources into sustainable products. Venditti uses environmental life cycle analysis to guide and analyze research in bioproducts. He is currently heading a multi-organization research project to understand the fate of microparticles from laundering in the environment. He also is the principal investigator of a four year, $2.75 million United States Department of Agriculture program, entitled, Preparing Diverse and Rural Students and Teachers to Meet the Challenges of the Bioproducts and Bioenergy Industry. Venditti teaches Unit Operations of Pulp and Paper, Process Control, Environmental LCA, and Introduction to the Bioeconomy classes at NC State.

Additionally, Dr. Venditti is the director of the Pulp and Paper Workshop at NC State, co-sponsored by the Technical Association of Pulp and Paper Industries (TAPPI). He teaches the paper recycling portions of the course. He received a PhD in Chemical Engineering from Princeton University, was named a TAPPI Fellow in 2012, and was named a Fulbright Senior Specialist in Environmental Science in 2009. He has over 150 peer reviewed publications and three patents. The Venditti-Gillham Equation was derived by Venditti to predict the glass transition temperature as a function of chemical conversion in polymeric systems and is often cited by name, with over 120 citations. His technology was the catalyst of a start-up company, Tethis, that produces renewable products such as superabsorbent polymers from carbohydrates.

Area(s) of Expertise

Processing and utilization of natural polymers in new products and fuels, biodegradation of biopolymers, microfibers from laundering, the fundamentals of separation science in fiber processing, paper and cotton recycling, and the environmental life cycle analysis

Publications

View all publications

Groups